
COMPUTATION OF LYAPUNOV CHARACTERISTIC EXPONENTS 

SPECTRUM BY THE COMPOUND MATRIX METHOD 
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Abstract 
The Compound Matrix Method, that have been used for the numerical integration of differential equations in the 

field of hydrodynamics [1,2], is applied for the numerical computation of the spectrum of Lyapunov Characteristic 

Exponents (LCEs) for dynamical systems of various degrees of freedom. The method overcomes the necessity 

of applying an orthonormalization procedure, that preserves the linear independence of the deviation vectors, 

during the numerical integration. This is achieved by translating the considered vectors into areas, volumes and 

hyper-volumes. The Fermi-Pasta-Ulam (FPU) lattices were considered and studied for various degrees of 

freedom. The obtained results are compared with the ones produced by the well-known standard method of [3]. 

FPU β-lattice 
The model describes a chain of N particles with nearest-neighbor interaction. It’s Hamiltonian is : 

The vector of an orbit in the 2N dimensional phase space is : 
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The time evolution of the orbit is governed by the Hamilton equations of motion : 
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A deviation vector evolving on the tangent space is of the form : 
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It’s time evolution is governed by the variational equations : 
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Compound Matrix Method 
The method applies the theory of exterior algebra and wedge product in order to create ordinary differential 

equations for the time evolution of areas, volumes and hyper-volumes constructed by the considered deviation 

vectors. This is done by appropriate combinations of the coordinates of the deviation vectors according to the 

lexicographical order. For the case of N=2 particles, there are four possible different combinations of the k=4 

deviation vectors. For k=1 we get the usual vector, whose evolution is defined by the variational equations. The 

wedge product of k=2 deviation vectors defines a two-dimensional surface, while the wedge product of k=3 

vectors describes a three-dimensional volume. Finally, in the k=4 case, the wedge product corresponds to the 

determinant of the 4x4 matrix having as elements the coordinates of the 4 deviation vectors. The equations 

defining the evolution of these quantities are numerically integrated by an extension of the symplectic 

integration techniques used for the integration of the Hamilton equations of motion according to the so-called 

tangent map technique [4]. Following this approach, we do not need to apply the orthonormalization procedure 

used in the standard method of [3]. The following flowchart shows the successive steps of the method : 
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Considering the case of N=2 particles, the various cases of k additive matrices, according to [5,6,7] are : 

][)( , kk Ay : multiplicative and additive compound matrices respectively 

For 
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Figure 2.b : Computation of the spectrum of 

LCEs of the chaotic orbit of Fig 2.a, by the 

compound matrix method. 
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Figure 3.a : Computation of the mLCE (X1) 

and its inverse (X20) of a chaotic orbit for N=10 

and Energy=10.0, by the method of [3]. 

Figure 3.b : Computation of the mLCE (X1) 

and its inverse (X20) of the chaotic orbit of Fig 

3.a, by the compound matrix method. 

Figure 2.a : Computation of the spectrum of 

LCEs of a chaotic orbit for N=4 and 

Energy=10.0 by the method of [3]. 

Figure 4 : CPU times needed for the numerical 

computation of the spectrum of LCEs  for 

N=2,3,4 particles and for the computation of 

the mLCE (X1) and its inverse  (X20) for N=10 

particles, applying the method of [3] and the 

compound matrix method. 

Application of the Compound Matrix Method 
We compare the LCEs obtained by the standard method of [3] with the ones found by the compound matrix 

method for various numbers of particles. The fourth order symplectic integrator SABA2C [4] is used for the 

numerical integrations. The time step was fixed at dt=0.01 and the maximum integration time was set to be 

tmax=100.000. The energy of the system is fixed at E=10.0. 
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Conclusions 
The compound matrix method provides an alternative, efficient approach for the computation of the whole 

spectrum of LCEs. It can also be used for the computation of individual LCEs. Its basic feature is that it 

produces differential equations that describe the evolution of hyper-volumes instead of individual deviation 

vectors as the usual variational equations do. 

Figure 1.a : Computation of the spectrum of 

LCEs (X1>X2>X3>X4) of a regular orbit for 

N=2 and Energy=10.0, by the method of [3]. 

Figure 1.b : Computation of the spectrum of 

LCEs of the regular orbit of Fig. 1.a, by the 

compound matrix method. 


